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1 Introduction

With the proliferation of digital signal processors,
DSPs, and the ever increasing need for higher data
rates over radio channels, it is no surprise that
DSPs are becoming integral parts of modern ra-
dios. Some of the early uses were for performing
spectral and delay equalization tasks and straight-
ening out the non-linearities of the mixers and am-
plifiers. Now they are also being used for performing
the modulation/demodulation tasks. Not only does
this enhance the radio’s performance, but also it
puts more of the radio under software control which
simplifies the configuration task of multifunction ra-
dios. In the context of the paper, the term radio
refers to both transmitters and receivers.

High data rate modulation methods utilize op-
timal filters, precise phase and frequency shifters,
and harmonically pure numerically controlled oscil-
lators. There is a lot of information in the literature
about the design of such modulators and demodu-
lators along with most of their components. But
there is relatively little about discrete time oscilla-
tors. This paper presents an oscillator design that
can be used in almost any modulator topology.

The oscillator features a stabilized amplitude
with quadrature outputs, and it may be smoothly
tuned. The author has implemented the algorithm
in a Motorola DSP56002. The subroutine consists
of 23 instructions and consumes just 46 processor
clock cycles per oscillator output. This includes
frequency tuning and both the I and Q outputs.
If tuning is not required, then only 28 cycles are
needed.

2 Oscillators

The classical approach to oscillator design uses an
amplifier whose output is fed back to its input via
a gain reducing and phase shifting network. The
Barkhausen criterion for an oscillator requires the
forward gain times the reverse gain to equal 1 and
that the phase shift must be a multiple of 27. This
is easily done with a DSP via multiplies and delays.

2.1 Table Look Up

A simple, yet frequency limited, way to generate
sinusoids is by table look up. The sinusoid is evalu-
ated and stored in a table. To generate the sinusoid,
the table’s values are read off in succession with ta-
ble wrap around. This is easily done with a pointer
using modulo arithmetic. Since a phase continuous
sinusoid is desired, the table needs to hold an inte-
gral number of periods. Despite the simplicity of the
table method, it does possess two major problems.
The first is the requirement that the frequency must
divide evenly into some integral multiple of the sam-
pling rate. This can result in lengthy tables. Also
if quadrature outputs are needed, then the table’s
length must be a multiple of 4, so an exact 90° phase
relation is maintained. The second drawback is the
question of smooth frequency adjustment.

Some deal with these problems by using shorter
tables and accepting the harmonic distortion caused
by the phase discontinuities while nonuniformly
stepping through the table. However, some appli-
cations require harmonically pure waves and find
this method unsuitable. Additionally, for quadra-



ture outputs, this method has a phase, between the
carriers, noise component.

The table look up method’s harmonic distortion
and phase noise can be reduced by using interpo-
lation, but then the total computational effort ex-
ceeds that of the recursive oscillators. When pure
sinusoids are needed, the recursive oscillators be-
come the method of choice.

2.2 Recurrence Relations

Since classical oscillators function by feeding their
output back into their input with an appropriate de-
lay, it is desirable to find a similar relationship that
is operable with a discrete time system. This dis-
crete time relation is called a “recurrence relation.”
The recurrence relation states that when given n
consecutive values, the next value can be calculated.
If the recurrence is such that the next value can be
written as a linear combination of the past n values,
the recurrence relation represents an nth order all
pole filter. An all pole filter has a feedback only
topology.

An oscillator that generates a single sinusoid is
called a simple harmonic oscillator, SHO. From the
theory of difference equations, it can be shown that
a discrete time sinusoid has a two term recurrence
where the coefficients are real valued. This two term
recurrence turns out to be a classical trigonometric
theorem. It is:

sin(a + b) = 2 cos(b)sin(a) — sin(a — b) (1)

To interpret this theorem as an oscillator recur-

sion iteration, let a = 2]7§—fn and b = Z}F—f, where f is

the oscillator frequency, st is the sampling rate, and
n is the sample number. Then the theorem becomes

i (271 = 2cos 2r ] sin 27rfn
sm( 7 (n+1)> = 2 < 7 ) < 7 )
— sin <2;:f (n — 1)) (2)

Written in this way, the recurrence is found to be

NextSin =

2
2 cos < }Tf> PresentSin

—LastSin (3)

This relation says that with two starting values
and two feedback values, one can recursively gen-
erate a sine wave. One of the feedback values is
the constant,—1. Since the value of a in the trig
theorem is arbitrary, the recursion is phase invari-
ant. It is the starting values that allow for both
amplitude and phase determination. The frequency
enters into both the starting values and one of the
feedback values.

For example, the initial values could be set to 0
and A sin (2—?) to make a sinusoid with frequency
f and amplitude A. Notice that the filter’s first
output is A sin (22—}?)

() cos(a + bn)

Figure 1: Simple Harmonic Oscillator

2.3 Quadrature Oscillators

Previously, a two term recurrence (2nd order) rela-
tion was used to make a SHO. Now two coupled
single term (1st order) recurrence relations will be
used to make an oscillator that has two outputs
where one is 90° out of phase with respect to the
other. To construct such an oscillator requires two
classical trigonometric theorems. They are:

sin(a +b) =
cos(a +0b) =

sin(a) cos(b) + cos(a)sin(b) (4)
cos(a) cos(b) — sin(a) sin(b) (5)

Substituting the same values for a and b as before,
the prescription for a quadrature oscillator is:

2
NextSin = cos< ;Tf> CurrentSin +



DO

sin < Wf) CurrentCos (6)
s

COS <
fs

sin <2;Tf> CurrentSin (7)

DN
~

NextCos =

) CurrentCos —

Figure 2 shows the network form of the quadra-
ture oscillator.

Like before, there are two delay elements; how-
ever, the initial values are different. With the
SHO case, they are two consecutive samples of a
sinusoid— In this case, they are samples of a sinu-
soid 90° apart. This last fact makes the quadrature
oscillator easy to control.

The usefulness of the quadrature oscillator has its
roots in Fourier transform theory. Most important
is the frequency shifting theorem which says for the
fourier transform pair:

z(t) & X(w) (8)

that
()™ & X (w — Aw) 9)
The quadrature oscillator generates the components
of ¢t Thus the quadrature oscillator is a key

component of the frequency shifting process.

cos(a + bn)

cos(b)
i\/@ sin(a + bn)

sin(b)

Figure 2: Quadrature Oscillator

2.4 Amplitude Stabilized Oscilla-
tors

So far the described oscillators are ballistic in the
sense that they are loaded with some preset values
and allowed to free run. Since the filter’s coefficients
and data must be quantized to be practical, a DSP
implementation may yield an oscillator whose am-
plitude will change with time. If the word size of the
DSP is large, i.e., 24 bits, the oscillator can operate
for a large number of iterations before the ampli-
tude change becomes significant. Some numerical
experiments have demonstrated over a million it-
erations are needed before the amplitude changes
more than 10 percent. So ballistic oscillators func-
tion very well for short duration tone bursts. How-
ever, if one needs to generate a carrier, which can
operate indefinitely, a ballistic oscillator won’t do.

To stabilize the amplitude, one measures the os-
cillator’s amplitude and compares it with the set-
point (desired) amplitude and adjusts the feedback
accordingly. The quadrature oscillator allows for
trivial, non-frequency dependent, amplitude mea-
surement. By denoting the outputs I and . The
amplitude, A, is just v/I? + Q2. If the setpoint am-
plitude is denoted Ag, then the stabilization gain G
is A

G = ——— (10)
VLR
The factor G is used in the feedback loops.

If the instantaneous error correction requirement
is relaxed, the costly division and square root func-
tions can be avoided. This is done by finding the 1st
order Taylor’s series expansion of G about Ag. This
approximation has the property of becoming more
accurate as A, approaches A,. This approximation
is:

3

1
Grg- 5,4;2(12 + Q%) (11)

Since the amplitude variations, without stabiliza-
tion, are very small, the first order correction works
very well.

With the consideration of a fixed point DSP in
mind, it becomes convenient to let Ay = g Also,
if G 1 is used and the corrected values are scaled up
by 2, then all of the values are in [—1,1).

Thus,

G

=~ 5P+ Q% (12)
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The network for the amplitude stabilized oscil-
lator is shown in figure 3. The circles with the
ITs in them represent multiplication by a variable,
whereas, the triangles represent multiplication by a
constants. This form of the oscillator when used in
conjunction with a delay line, and a Hilbert trans-
former, may be used for single side band amplitude
modultion, SSB AM. Likewise, this oscillator may
be used to implement both quadrature amplitude
modulation, QAM, and quadrature amplitude de-
modulation, QAD.
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Figure 3: Amplitude Stabilized Quadrature Oscil-
lator

2.5 Frequency Tuning

As mentioned earlier, the quadrature oscillator has
many merits. Not only is it easy to stabilize its am-
plitude, but it is also easy to adjust its frequency
while in operation. Since the two term recursive
oscillator has only one frequency dependent coeffi-
cient, if it is adjusted while the oscillator is run-
ning, the oscillator will change amplitude in addi-
tion to changing frequency. However, the quadra-
ture oscillator with its two frequency dependent co-
efficients will not change amplitude when the fre-
quency is changed. The resulting sinusoid is con-
tinuous. Thus, the tunable oscillator functions like
a voltage controlled oscillator, VCO, in a phase
locked loop, PLL. This discrete time tunable os-

cillator is called a numerically controlled oscillator,
NCO.

This makes the NCO ideal for use as a frequency
shift keying, FSK, modulator. Additionally, if the
NCO'’s, input is first differentiated, then one has a
phase shift keying, PSK, modulator.

The amplitude independence during tuning arises
from the fact that the two stored values are always
90° apart. This is not true with the SHO. For
a two or four level FSK system, the cos(b) and
sin(b) terms for each frequency are precalculated
and stored in a table.

For a continuously variable frequency modula-
tion, FM, system, cos(b) and sin(b) will have to
be evaluated in real time. Since the amplitude sta-
bilized form is used for long term stability, slight
errors in the sin(b) and cos(b) terms are tolerated.
This means moderate order series expansions may
be used for sin(b) and cos(b).

A wide band FM system will need a Chebyshev
expansion where the maximum error is minimized
over an interval that is matched to the working
range of the oscillator. A narrow band FM system
can use a Taylor’s approximation. The expansions
are about the center frequency. Since the error is
zero at the center frequency and small frequency
deviations are common in FM systems, a low order
approximation can be used. Since order of kilohertz
deviations are performed on order of 100 megahertz
carriers, it is easy to see that the relative frequency
shift, A, is a tiny number.

If b is the center frequency, the following 2nd or-
der Taylor’s approximations are found:

Q

cos(b+ h) <1 - %2> cos(b) — hsin(b) (13)

sin(b + h)

Q

<1 — %2> sin(b) 4+ h cos(b) (14)

where h is a small frequency deviation.
A similar functional form arises for the Cheby-
shev expansions.

cos(b+h) =~ C(h)cos(b) — S(h)sin(b) (15)
sin(b+h) ~ C(h)sin(b) + S(h)cos(b) (16)

Here C'(h) and S(h) are low order polynomial ex-
pansions of cos(h) and sin(h) about 0 repectively.



This formulation for both the Taylor and Chebyshev — move b,y: (r\reg)-
expansions uses an orthogonal transformation from  ENDM
the center frequency b to the origin. The orthogo-

nal transformation’s advantage is that the polyno- ;amplitude stabilized quadrature
mial approximation errors are not magnified by the ; oscillator iteration (CST)
transformation process. This allows for lower order ;14 instructions -- 28 cycles
polynomial approximations and smaller magnitudes  ;424nSec @ 66MHz

for the polynomial’s coefficients.
AQ_OSC MACRO reg
move L:(r\reg)+,x

3 DSP Code mpy x0,x1,a L:(r\reg)-,y
mac -y0,yl,a

This section shows three useful oscillator macros, mpy x1,y0,b

Written in Motorola DSP56002, demonstra.ting VAl pac x0,y1,b a,x0

ious .forms of tl.le.algorlthm’s 1mp1e.mentat10n. The mpy -x0,%0,a b,y0
first is the ballistic form of the oscillator. The sec- | ~y0,y0,a #0.75,b
ond is an amplitude stabilized quadrature oscillator, 34y b ,a

and the third is a smoothly tunable stabilized oscil-
lator. Each uses two long memory locations. On en-

move a,x1

mpy x1,x0,a
try and exit r\reg points to the first of the memory 41 5
. . 2
1ocat10ns. The first long a.ddress CODt.aIIlS oS (%ﬁ) mpy x1,y0,b a,y:(r\reg)+
in x space and has the cosine output in the y space. 5457 p

V2

The cosine output is initialized to *3=. The second  poye b,y: (r\reg)-

long address contains sin (M) in x space and has  ENDM
the sine output in the y space. The sine output is

initialized to 0.0. Since the macros make extensive  ;Continuously tunable,

use of the processor’s parallelism, the long memory  ; stabilized quadrature oscillator (CST)
data should be placed in internal DSP ram to avoid ~ ;Uses 2nd order Taylor’s series.

wait states. ;23 instructions -- 46 cycles

The macros may easily be modified to provide ;697nSec @ 66MHz
stackable oscillators by changing the autodecrement
part of the each macro’s last instruction to an au-  AFQ_0SC MACRO reg
toincrement. The pointer would also need to be move a,y0 #0.5,b ;a has delta freq.

configured to be modulo 2 times the number of os-  asl b L:(r\reg)+,x

cillators. Likewise, the memory locations will need asl b

to be at the proper type of modulo address. mac -y0,y0,b L:(r\reg),y
asr b a,y0

;ballistic quadrature mpy -yl,y0,a b,x0

; oscillator iteration (CST) mpy x1,y0,b

;6 instructions -- 12 cycles mac y1,x0,b L:(r\reg)-,y

;182 nSec @ 66MHz mac x1,x0,a L:(r\reg),x
move a,xl

Q_0SC MACRO reg mpy x0,xl,a b,yl

move L:(r\reg)+,x mac -y0,yl,a

mpy x0,x1,a L:(r\reg)-,y mpy x1,y0,b

mac -y0,yl,a mac x0,yl,b a,x0

mpy x1,y0,b mpy -x0,x0,a b,y0

mac x0,yl,b a,y:(r\reg)+ mac -y0,y0,a #0.75,b



addr b,a

move a,x1

mpy x1,x0,a

asl a

mpy x1,y0,b a,y:(r\reg)+
asl b

move b,y: (r\reg)-

ENDM

4 Conclusion

Several oscillator forms have been described along
with sample code and a continuously variable fre-
quency, amplitude stabilized quadrature oscillator
is developed. While this last form seems to be a
bit convoluted, its execution is straight forward. It
needs only four memory locations— two for the out-
puts and two for the feedback values. These four
locations may be combined into two long memory
locations as is done in the sample macros.

The quadrature oscillator is not only extremely
flexible in that it finds numerous uses in modulators
and demodulators, but this implementation also al-
lows for easy control. Also, The efficiency of the
oscillators allows one to design a radio with a gen-
eral purpose DSP with an IF in the 100 kHz range.
An ASIC could execute the algorithm at a much
higher rate.



