
Recursive Discrete-Time
Sinusoidal Oscillators

Every few years an arti-
cle emerges that pres-
ents a method for
generating sinusoidal
functions with a digi-

tal signal processor (DSP). While
each oscillator structure has been de-
veloped pretty much on its own, a
simple overlying theory has not been
presented that unifies all of the vari-
ous oscillator structures and can easily
allow one to look for other potential
oscillator structures. We can find
some guidance for our quest by first
examining classical oscillators.

The German physicist Heinrich
Barkhausen, during the early 1900s,
formulated the necessary require-
ments for oscillation. He modeled an
oscillator as an amplifier with its out-
put fed back to its input via a
phase-shifting network. From this
model, he deduced and stated two
necessary conditions for oscillation.
The Barkhausen criteria, as they are
now known, require the total loop
gain to be equal to one and the total
loop phase shift needs to be a multiple
of 2π radians. So, if we are to unify
discrete-time oscillator designs into a
single theory, we need to find the dis-
crete-t ime equivalent of the
Barkhausen criteria and use it to de-
velop our theory.

But first, we will look at how some
very old trigonometric formulas,
viewed in a not so usual way, can be
utilized for sinusoidal generation.
Several oscillators have been designed
via this approach. A sum and differ-

ence of angles formula written
explicitly in recursive form is

cos() cos() cos()
cos().

ϕ θ θ ϕ
ϕ θ

+ =
− −
2

(1)

We will refer to this as the “biquad”
form. This is also called the “direct
form” implementation. If the value θ
is viewed as a step angle, then we can
immediately see how this formula can
be used to calculate the next sample of
a sinusoid given two known samples
spaced θ apart and a step factor which
is just 2 cos()θ . To see how this can be
used for iterative generation of a sinu-
soid, just view the formula as follows:

NextCos
CurrentCos LastCos.

=
× −
2 cos()θ

(2)

Instead of using a single equation
for a recurrence relation, a pair of trig-
onometric formulas may be used. An
example that can be used to recur-
sively generate sinusoids is

cos() cos() cos()
sin()sin()

sin() cos()s

ϕ θ ϕ θ
ϕ θ

ϕ θ ϕ

+ =
−

+ = in()
sin() cos().

θ
ϕ θ+ (3)

We will refer to this as the “coupled”
form. The coupling is evident in that
each equation uses not only its past
value but also the past value produced
by the other equation. Again θ is used
as the step angle per iteration, and this
leads to an oscillator output frequency

of θ πf s /2 where f s is the sample rate.
Just like the biquad form, the coupled
form requires the use of two past val-
ues. This turns out to be the case for all
sinusoidal oscillators that are limited to
the use of real numbers.

Matrix Derivation of
Oscillator Properties
Now we desire to find a general
enough process that can be used to ex-
press both the biquad and the coupled
form equations. First we will denote
the two past values (these are actually
called state variables) as x1 and x2
and their “hatted” versions as the new
values. Plus we notice that the update
equations are linear for both forms, so
we can write them in terms of matrix
multiplication.

The matrix form of the update iter-
ation for the biquad is

$

$

cos()x
x

x
x

1

2

1

2

2 1
1 0







=

−










θ
.

(4)

Likewise the coupled form’s up-
date iteration is written as

$

$

cos() sin()
sin() cos()

x
x

x
x

1

2

1

2







=

−








θ θ
θ θ 



.

(5)

The interpretation of the matrix it-
eration is that the column vector on
the right-hand side contains the old
state values, and when they are multi-
plied by the rotation matrix, you get a
new set of state values. Then for the
next iteration the “new values” from

MAY 2003 IEEE SIGNAL PROCESSING MAGAZINE 103
1053-5888/03/$17.00©2003IEEE

Clay S. Turner

the last iteration are used as the “old
values” for the next iteration. Thus
each iteration is just performed by a
matrix multiplication times the state
variables. While the idea of matrix
math may seem to unnecessarily com-
plicate things, it actually allows us to
go and find new types of oscillators.

The term rotation is used since the
matrix multiplication can be viewed
from a special vantage point as doing
a rotation. This special vantage point
will be explained in more detail later.
A general form that fits both of these
aforementioned oscillators is the use
of a 2 × 2 rotation matrix and two
state variables. So a general oscillator
iteration is written as

$

$

x
x

a b
c d

x
x

1

2

1

2









 =


















.

(6)

We will now look at a numerical
example of an oscillator iteration. (It
is neither the biquad nor the coupled
form mentioned earlier.) We will use

095 1
00975 095

.
. .

−









(7)

for the rotation matrix and use

1
0











(8)

for the initial state values. A graph of
both state variables’ values for the first
100 iterations is shown in Figure 1.

Now that we’ve seen a numerical
example and two analytical examples,
naturally the question becomes “what
are the constraints on the values of the
four elements in the rotation matrix
and have the matrix still function for
an oscillator iteration?” It turns out
that there are two constraints, and
these are the discrete time equivalent
of the Barkhausen criteria. They are

| |
ad bc

a d

− =

+ <

1

2. (9)

The first constraint says the deter-
minant of the rotation matrix must be
one. This is analogous to saying the
loop gain is unity. The second
constraint (assuming the first con-
straint is met) says the matrix has
complex eigenvalues. This means the
oscillator output will eventually re-
peat. This is a discrete-time equivalent
to Barkhausen’s criterion for periodic-
ity. While not obvious, it can be
shown from these two constraints that
both matrix elements, b and c, must be
nonzero; thus the rotation matrix can’t
be triangular. What we have done here
is basically come up with a set of rules
that can be easily applied to any 2 × 2
matrix to see if it can be used to make
an oscillator. And soon we will come
up with more rules that will allow you
to identify the type of oscillator just by
looking at its matrix.

Now we will make a brief sojourn
into eigenvalues and eigenvectors.
“Eigen” comes from German mean-
ing characteristic. The reason we need
to make this side trip is that this the-
ory will allow us to perform an adroit
factoring of the rotation matrix. And
this will allow us to ascertain the oscil-
lator’s properties and determine the
initial values for the state variables.

We are used to the idea of identity
operations such as adding zero and

multiplying by one. An analogous
question in matrix theory is “Is there a
vector x that, when multiplied by a
matrix A, results in a scalar multiple,
λ, of the original vector?” Mathemati-
cally this is written as

Ax x= λ . (10)

When this is satisfied, λ is an
eigenvalue and x is its corresponding
eigenvector of the matrix A. For our 2
× 2 matrices that obey the Barkhausen
criteria, there will be two eigenvalues;
in fact they are complex conjugates of
each other, and each has a magnitude
of one. For the rest of this article, the
rotation matrix, A, is assumed to be a
2 × 2 matrix consisting of four real
valued elements, and it obeys the
aforementioned Barkhausen criteria.
Explicitly matrix A is

A
a b
c d

=








.

(11)

If we let the vector x contain the
initial state values, the nth output,
y n()of the oscillator can be written as

y n A xn() = . (12)

Now we will use a wonderful result
of eigenvalue theory and factor the

104 IEEE SIGNAL PROCESSING MAGAZINE MAY 2003

1.0

0.5

0.0

−0.5

−1.0

x n2()

x n1()
×××

0 10 20 30 40 50 60 70 80 90 100

� 1. Output from example numeric oscillator.

general matrix into a product of
three matrices. This actually makes
raising a matrix to a power much
easier to perform

A SDS= −1 . (13)

Thus A n can be written as
() () () ()SDS SDS SDS SDS− − − −⋅ ⋅ ⋅1 1 1 1

and after canceling out paired S S−1

terms, we get the following simplifi-
cation for our oscillator output:

y n SD S xn() = −1 . (14)

At first blush this doesn’t seem to
help, but now let’s talk about the con-
tents of the S and D matrices. First the
D matrix is a diagonal matrix whose
only nonzero elements are on the
main diagonal (upper left and lower
right for our case). These elements are
the eigenvalues. Also raising a diago-
nal matrix to a power is simply the
raising of the diagonal elements to the
same power. In terms of the original
rotation matrix elements, the diago-
nal matrix is found:

D
e

e

j

j=








−

θ

θ

0
0

(15)

where

θ = 





−cos 1

2
∆

(16)

and

∆ = +a d. (17)

It is at this point that we can see how
raising the matrix D to a power affects a
rotation. In fact, θ, is the step angle of
the oscillator per iteration. Now the
“change of basis” matrix, S, contains
the eigenvectors that correspond to the
eigenvalues used in matrix D. Again in
terms of the original rotation matrix el-
ements, the matrix S is

S
e ej j= 







φ − φ

1 1
ψ ψ

(18)

where

ψ = −c
b (19)

and

φ = arg()η (20)

where

η =
− + −()d a j

b
4

2

2∆
.

(21)

It is interesting to comment on the
fact that a real-valued rotation matrix
is factored into a product of complex
valued matrices. However, the imple-
mented oscillators will only use real
valued numbers. This brings to mind
a saying attributed to the French
mathematician Jacques Hadamard:
“The shortest path between truths in
the real domain passes through the
complex domain.”

Now the term “change of basis”
was mentioned in connection with
matrix S. This is used since the matri-
ces S and S − 1 map between external
and internal space. This should be
viewed as the state variables undergo-
ing three processes. The first is a trans-
formation to internal space represen-
tation. The second process is a pair of
rotations performed on them, and
lastly, a transformation back to exter-
nal space. In internal space, the two ro-
tations are in opposite directions; this
allows us to combine complex num-
bers so as to result in only real num-
bers. Now let the variable z be an inter-
nal representation as follows:

z S x= −1 . (22)

Next let x have an initial value so that

z =










05
05
.
.

.
(23)

Then our oscillator output is simply
written as

y n SD zn() = (24)

that after simplification yields

y n
n

n
()

cos()
cos()

=
+ φ











θ
ψ θ

.
(25)

Likewise given our initial choice for z,
then the initial state values are

x Sz= (26)

that after simplification yields

x =
φ











1
ψ cos()

,
(27)

which is of course just y()0 .

Interpreting the
Rotation Matrix
The attractive aspect of this analysis
method is that we can now evaluate an
oscillator’s behavior by merely looking
at its rotation matrix! We see that our
analyses includes two angles. The an-
gle θ is the step angle per iteration, and
the angle φ is the phase shift between
the two state variables. So, we can see
that if we desire an oscillator to have
quadrature outputs (the two state vari-
ables), then φ must be ±90°, which in
terms of the matrix elements means
that the two values on the main diago-
nal must be the same! So if a d= , we
have a quadrature oscillator. Likewise
the scaling factor ψ tells us the ampli-
tude of the second state variable rela-
tive to the first one. If we desire the
two outputs to have equal amplitudes,
then the off diagonal elements must be
negatives of each other! That is,
b c= − . So looking back at the matrix
used in our numerical example, we can

MAY 2003 IEEE SIGNAL PROCESSING MAGAZINE 105

quickly ascertain the outputs are in
quadrature but will have unequal am-
plitudes as its graph confirms.

Now when it comes to program-
ming the oscillator in a DSP chip,
we would not normally elect to
implement the iteration as a matrix
multiply; something simpler may be
possible! So we will derive the net-
work diagram that represents the
general rotation matrix multiplica-
tion. In the world of signal process-
ing, it is customary to try to only use
addition, multiplication, and delays,
and that is all we will use. The center-
piece of the network diagram in Fig-
ure 2 is the pair of delay elements that
are interpreted to hold the state vari-
ables. For each iteration, the outputs
of the delay elements are used as the
past values and the inputs to the delay
elements are the new values. For ex-
ample, the input to the upper delay el-
ement in Figure 2 is calculated:

$y ay by1 1 2= + .

This generic form requires four
multiplies and two additions for each
iteration. If the rotation matrix has
some values in common or some are
simply zero or one, then the iteration
computations may become simpler.

Catalog of Oscillators
Now that we had gone through the
theory of discrete-time recursive os-
cillators, we will now list some com-
mon oscillators along with their
attributes. I have chosen five oscilla-
tors that span the gamut based on the
number of multiplies per iteration
and their type of outputs. All oscilla-
tors represented by 2 × 2 matrices will
produce two sine waves simulta-
neously. These two sine waves will al-
ways have the same frequency, be out
of phase with each other, and may
have differing amplitudes. If the out-
puts are 90° out of phase, then we
have a quadrature oscillator. Likewise

if the two sine wave outputs have the
same amplitude, then we have an
equi-amplitude oscillator. Four of the
five oscillators in this catalog are in
use in industry as they are mentioned
in various application notes and trade
journals. The quadrature oscillator
with staggered update is one I put to-
gether using this matrix theory. Often
you can make a new oscillator by per-
muting the matrix elements of a
known oscillator. Just apply the
Barkhausen criteria to the resulting
matrix to see if they still hold. Also
you can multiply an oscillator matrix
by another matrix and often create an-
other oscillator. So, as you can gather,
this catalog hardly exhausts the possi-
ble list of oscillators. To show the
structure of an oscillator’s matrix in
its simplest form, the concept of tun-
ing parameter is introduced. This pa-
rameter, k, is related to the step angle,
θ. The exact relation, which depends
on the particular oscillator used, will
be provided.

Biquad
The biquad oscillator was one of the
first discrete oscillators to see use in
signal processing applications. I recall
an application patent issued in the
1980s that used this oscillator for
generating call progress tones used in
telephony. I found this interesting

since François Viète discovered the
trigonometric recurrence relation (1)
long before; his result was published
in the year 1571! The biquad oscilla-
tor has equi-amplitude outputs,
which turn out to have a relative
phase shift of θ
k = 2 cos()θ (28)

k −









1
1 0

.
(29)

When the rotation matrix (29) ele-
ments are substituted in Figure 2, the
generic oscillator network becomes the
biquad oscillator shown in Figure 3.

Digital Waveguide
The digital waveguide oscillator is the
simplest (in terms of the number of
multiplies) oscillator with quadrature
outputs. For k near zero, the outputs
become nearly equal in amplitude. This

106 IEEE SIGNAL PROCESSING MAGAZINE MAY 2003

y n1()

y n2()

Z−1Σ

Σ

+
+

+
+

a

b

c

d
Z−1

� 2. Generic oscillator iteration network diagram.

y n1()

y n2()

Σ
+

−

k

Z−1

Z−1

� 3. Biquad oscillator.

means this oscillator can be effectively
used to phase lock a signal near 1/4 the
sampling rate. More on dynamic tun-
ing (i.e., changing frequency while in
operation) of oscillators later. Figure 4
shows the network form for the digital
waveguide oscillator.

k = cos()θ (30)

k k
k k

−
+











1
1

.
(31)

Note that the digital waveguide
oscillator is a claimed item under U.S.
patent #5701393, so consult the pat-
ent’s owner before using this oscilla-
tor in a product.

Equi-Amplitude,
Staggered Update
The staggered update oscillators take
their name from the fact that one state
variable is first updated and then that
new value is used in the update of the
remaining variable. This oscillator’s
outputs are equi-amplitude and
quasi-quadrature, with the quadra-
ture relation being reached in the
limit of small k. To explicitly show the
oscillator iteration as being staggered,
its matrix along with a factoring of
the matrix is shown. Notice how the
matrix factors into a product of two
triangular matrices, neither of which

can function as an oscillator alone.
This oscillator is shown in Figure 5.

k = 



2

2
sin θ

(32)

1
1

1
0 1

1 0
1

2−
−









 =









 −










k k
k

k
k

.
(33)

Quadrature,
Staggered Update
This quadrature oscillator has nearly
equi-amplitude outputs when k is
small. Again, as before, we show the
factoring of its matrix, but here we
notice that the right-hand factor is
effectively a biquad oscillator. So
the left-hand factor is used to
change the configuration of the
right-hand oscillator. This oscillator
is shown in Figure 6.

k = cos()θ (34)

k k
k

k
k

1
1

1
0 1

0 1
1

2−
−









 =

−







 −








.

(35)

Coupled,
Standard Quadrature
The coupled standard quadrature oscil-
lator features both quadrature and
equi-amplitude outputs. However,

there is a cost; this oscillator requires
four multiplies per iteration. This oscil-
lator, like the biquad, may be derived
directly from trigonometric formulas
as shown in (3). Here the two trigono-
metric functions are written in terms of
the single parameter, k. This oscillator
is shown in Figure 7.

k = sin()θ (36)

1
1

2

2

−
− −













k k
k k

.
(37)

Gathering our catalog of oscillator
properties yields the data in Table 1.

Dynamic
Amplitude Control
So far the oscillators we have de-
scribed are ballistic in the sense that
they are loaded with some values
and allowed to free run. If the run
time is “short,” then this may be ad-
equate. But errors can and may ac-
cumulate to the point where the
output no longer meets your re-
quirements. Thus a way of control-
ling the oscillator’s amplitude is
needed. A standard approach uses
an automatic gain control (AGC).
Since we are iterating the oscillator,
why don’t we just measure the
strength of the output and correct it

MAY 2003 IEEE SIGNAL PROCESSING MAGAZINE 107

y n1()

y n2()

Σ

+

−

k

Σ

Σ
+

+

+
+

Z−1

Z−1

� 4. Digital waveguide oscillator.

y n1()

y n2()

−k Σ
+

+
−

k

Σ

Z−1

Z−1

� 5. Equi-amplitude, staggered update oscillator.

after each iteration? Also, if the er-
rors are small, the corrections only
need to be approximate.

Now when we are measuring the
oscillator’s output we will use pow-
ers (squares of the amplitude) in-
stead of the amplitudes to avoid
square roots. Square root calcula-
tions tend to be costly in a DSP. The
instantaneous power, P, is given by
the following formula (in terms of
state variables, matrix elements, and
phase shift):

P
x b

c
x b

c
x x

=
− − − φ

φ

1
2

2
2

1 2

2

2 cos()

sin ()
.

(38)

This formula looks painful to imple-
ment, but for fixed frequencies, the cal-
culation only involves six multiplies
and two subtracts. However, looking
ahead to being able to change fre-
quency, we see that if we restrict our-
selves to the quadrature oscillators
()φ ± °90 , then the formula for the
power becomes much simpler! It is just

P x b
c

x= −1
2

2
2 .

(39)

Along with the power measure-
ment, we need to find the gain needed
to properly scale the state variables. A
general gain formula is

G
P
P

q

q= 0 .
(40)

In this formula, P is the measured
power, P0 is the set point power, and
q is a convergence factor. Since we
rather not perform division, we will
use the first-order Taylor’s approxi-
mation; it has the neat property of
turning division into subtraction. It is

G q q P
P

≈ + −1
0

.
(41)

Since we are using G to scale the am-
plitudes (the state variables), it is best
to let q = 1 2/ . Also, when using fixed
point DSPs, it becomes convenient to
let the set point power also be 1/2
(amplitude≈0.707). Thus our correc-
tion formula becomes

G P= −3
2

.
(42)

But we still have one more poten-
tial problem and that is G will nomi-
nally be one, and sometimes we will
need to multiply the state variables by
a number slightly greater than one. A
trick that can be used is to multiply
the state variables by 1/2 G and then
double the results. So in summary the
AGC approach consists of the follow-
ing steps per iteration.

� Perform one oscillator iteration to
update the state variables.
� Measure the oscillator’s output
power, P.
� Calculate a gain factor, G.
� And finally, scale the state variables
by this gain factor.

Dynamic
Frequency Control
Finally we get to the subject of dy-
namic frequency control. Since there
are some applications where one
would like to have a numerically con-
trolled oscillator, we will briefly look
at what it takes to do this with these
oscillators. Changing an oscillator’s
frequency merely requires modifying
the rotation matrix’s k value for any
new θ frequency value. The difficult
part, however, is maintaining ampli-
tude control during dynamic fre-
quency changes. Since our general
power formula (38) shows both a de-
pendence on the frequency and am-
plitude rat io, this can prove
computationally inefficient in the
general case. Thus the problem is up-
dating the coefficients in the power
formula as the frequency is changed.
Plus some oscillators will also change
output amplitudes.

If we apply some restrictions to
the type of oscillator we can simplify

108 IEEE SIGNAL PROCESSING MAGAZINE MAY 2003

y n1()

y n2()

−

k

Σ
+

+
−

k
Σ Z−1

Z−1

� 6. Quadrature, staggered update oscillator.

y n1()

y n2()

k Σ
+

+
−

k

Σ

+

1−k2

1−k2

Z−1

Z−1

� 7. Coupled, standard quadrature oscillator.

the situation. If we look at just using
a coupled-standard quadrature oscil-
lator, all of these problems go away.
In this case the formula for the power
becomes independent of the matrix
elements altogether! However, the
difficulty in this case lies in the ma-
trix coefficients where two of them
involve radicals. One can use a
first-order binomial expansion for
these two terms, but then the deter-
minant is not quite one, so the AGC
must make up for the error. The cou-
pled-standard quadrature rotation
matrix that uses first-order binomial
expansions for the two terms with
radicals is

1
2

1
2

2

2

−

− −



















k k

k k
.

(43)

Equation (43), which can now be
used to approximate (37), has a deter-
minant that’s nearly one (specifically
1 44+ k /), so the gain compensation
works well for a wide range of k. But
even if we use a non-equi-amplitude
quadrature oscillator, we can find a
simple solution for its amplitude con-
trol. In fact we move the approxima-
tion in the process from the rotation
matrix to the power measurement.
An example using the digital wave-
guide oscillator will now be shown.
The power formula for the digital
waveguide oscillator in terms of the
tuning parameter, k, is

P x k
k

x= − −
+1

2
2
21

1
.

(44)

But knowing that we will be calculat-
ing the power on every iteration, and
preferring to avoid division, we will
use a first-order series expansion of
the denominator that gives the fol-
lowing approximation for P:

P x k x≈ + −1
2 2

2
21() . (45)

This approximation works well when
k is small, and k is small for frequen-
cies near one-fourth the sampling
rate. If the tuning range needs to be
enlarged, a higher-order expansion
may be used.

So far we have been making the os-
cillators easily controllable by using
low-order series expansions for the
difficult to calculate terms. But these
approximations carry a price tag; that
is, we either must use the oscillator in a
narrow tuning range where k is small,
or we must use a higher-order approx-
imation to accommodate a larger
range of operation. This results from
the limitation that the low-order ap-
proximation is only good over a finite
range. Sometimes our problem won’t
really be one of needing a large range
of operation, but rather we need to op-
erate over a narrow range where k is
centered around some nonzero value.
This case is easily handled by the use of
a frequency translation matrix. This
matrix, in effect, shifts the center fre-
quency of our oscillator to the point of
interest. The oscillator’s center fre-
quency is taken to be the frequency
where k is zero, and thus the approxi-
mations are exact at this frequency.
The steps for one iteration of a dy-
namic frequency, amplitude con-
trolled oscillator that uses a frequency
translation matrix are as follows:
� 1) Perform one oscillator itera-
tion using a tunable oscillator to up-
date the state variables. This can be
one of the aforementioned quadra-
ture oscillators.
� 2) Update the state variables using
the frequency translation matrix. This
matrix is simply the same as shown in
(37) where k is fixed to represent the
translation (shift) frequency. Since
the values in this matrix are inter-
preted to be constant, these values can
be calculated prior to runtime.
� 3) Measure the oscillator’s output
power, P. This is just applying (38) or
one of its simpler incarnations to the
state variables.
� 4) Calculate a gain factor, G.

� 5) And finally, scale the state vari-
ables by this gain factor.

It should be understood that there
is only one pair of state variables in-
volved in the previous set of steps.
Steps 1, 2, and 5 operate on the one
pair of values. And step 3 just uses the
same pair to calculate the power. This
can be viewed as two oscillators oper-
ating on the same state variables. It
just happens that one oscillator allows
for dynamic frequency control, and
the other just shifts the frequency.
The networks representing the oscil-
lator iterations are still the same as
previously cataloged. Explicitly we
can write the translation (shift) ma-
trix as

cos() sin()
sin() cos()

ω ω
ω ω−









.

(46)

In a practical implementation, you
will set ω π= 2 f fo s/ where f o is the
shift frequency in Hertz, and f s is the
sample rate. The shift frequency may
be different than the new desired cen-
ter frequency, since the natural center
frequency for some of the oscillators
is one-fourth of the sampling rate.

So what we’ve learned is that a rec-
ipe for recursive oscillator design is
the following:
� Pick your step angle based on the
desired oscillator frequency by using
θ π= 2 f f s/ .
� Select the desired oscillator network
based on the properties in Table 1.
� Define k using its relation to θ in
Table 1.
� Determine network coefficients
from the appropriate rotation matrix
in Table 1.
� Establish the initial conditions
from (27).
� Implement the oscillator using the
target hardware environment to de-
termine if dynamic amplitude control
is necessary.
� And if dynamic frequency control
is being used, determine if a transla-
tion matrix is needed.

MAY 2003 IEEE SIGNAL PROCESSING MAGAZINE 109

FSK Modulator
Design Example
For our example, we will highlight
the design of a simple modulator for a
1,200 Bd frequency shift-key (FSK)
modem. The modem generates either
1,300 or 2,100 Hz depending on
whether it is sending a “0” or a “1”
bit. We will let our sample rate be 8
kHz, which is common in telephony.
Since the data rate does not divide
evenly into the sample rate, a sample
rate conversion will be needed. This
also means the oscillator will generate
intermediate frequencies other than
1,300 and 2,100 Hz. This modulator
example will benefit from the use of a
translation matrix as well.

Looking at our two frequencies,
namely 1,300 and 2,100 Hz, we see
that we can use a fixed frequency os-
cillator at 1,700 Hz and let the vari-
able frequency oscillator range
between +400 and −400 Hz. So we
will use two oscillator matrices in tan-
dem where one has a fixed frequency
and the other varies depending on
whether we are sending a “0” or a “1.”
The first oscillator will function as the
frequency translation oscillator and
hence uses (46) for its work. This os-
cillator will not change frequency
during the modem’s operation, so the

two trigonometric constants can be
calculated prior to use, so we won’t be
concerned with there being radicals.

The second oscillator that changes
frequency while in operation will use
the first-order binomial expanded
version of the coupled standard quad-
rature oscillator (43). We are using
this oscillator since it allows for easy
frequency and amplitude control; re-
member the amplitude control is re-
quired here, somewhat for
accumulated numerical errors, but
mainly since this matrix (43) does not
strictly obey the Barkhausen criteria.
Fortunately, the AGC can more than
compensate for the oscillator’s gain as
long as k is small, which means low
frequencies with this oscillator, hence
the use of the frequency translation in
the overall modulator.

Since the input to the modem is a
sequence of bits (1,200 b/s), we need
to do several things before we let it
control the oscillator’s frequency.
First we need to perform an antipodal
mapping of the data, i.e., map “1” bits
to a value of +1, and map “0” bits to
−1. Next we need to resample these
1,200 values per second to 8,000 per
second since this is the modem’s sam-
pling rate. Basically a multirate filter
is used to interpolate by 20 and deci-

mate by three. The low-pass filter
used in this process will be selected to
offer intersymbol interference (ISI)
rejection. A polyphase-raised cosine
filter will suffice. And finally, we will
scale the input to the oscillator, so it
will emit the correct frequencies.
Since we are doing an FM process,
the scaling just sets the modulation
index. The scaling can be combined
into the sample rate conversion pro-
cess. If a polyphase filter method is
used, the coefficients for each of the
filters just get scaled to set the modu-
lation index.

The fixed frequency matrix is set to
operate at 1,700 Hz, i.e., the average
of the two desired frequencies. Nu-
merically, the fixed frequency matrix
is just

cos ,
,

sin ,
,

sin ,

2 1 700
8 000

2 1 700
8 000

2 1

π π

π

















− 700
8 000

2 1 700
8 000,

cos ,
,





































≈

π

0233445 0972370
0972370 0233445
. .
. .

.
−











(47)

Now for the variable frequency part.
Since we desire to deviate between

110 IEEE SIGNAL PROCESSING MAGAZINE MAY 2003

Table 1. Recursive oscillator properties.

Oscillator Mult./Iter. Equi-Amplitude Quadrature
Output k = Rotation Matrix

Biquad 1 Yes No 2cos(θ)
k −









1
1 0

Digital waveguide 1 No Yes cos(θ)
k k

k k
−

+










1
1

Equi-amplitude-staggered update 2 Yes No 2sin(θ/2)
1

1

2−
−











k k
k

Quadrature-staggered update 2 No Yes cos(θ)
k k

k
1

1

2−
−











Coupled-standard quadrature 4 Yes Yes sin(θ)
1

1

2

2

−
− −













k k
k k

+400 and −400 Hz, we find the scal-
ing for the frequency input to the os-
cillator by k = =sin(/ ,)2 400 8 000π
0.309017. So our ISI filtered antipo-
dal values need to range between
±0.309017. The frequency input,
which is updated 8,000 times per sec-
ond, becomes the value k used in
(43). The two unique values in matrix
(43) are calculated 8,000 times per
second and then used in the variable
frequency oscillator iteration. And of
course the initial state values for the
oscillator combination are simply

2
2
0

0707107
0

















≈ 









.
.

(48)

These are found by scaling the re-
sult of (27) by P0 , and P0 is chosen
so (42) may be used for amplitude
control.

For each iteration then, we just
� Antipodal map, resample, ISI re-
jection filter, and scale the 1,200 b/s
data to create “k” for this iteration.
� “Matrix multiply” the state vari-
ables by the 1,700 Hz fixed frequency
matrix.
� “Matrix multiply” the state variables
by the variable frequency matrix; the
value of k was determined above.
� Measure the power:*P x x= +1

2
2
2 .

� Calculate the gain: * /G P= −3 2 .
� Scalar multiply the state variables
by the gain, G.

Summary
We have explored the basic theory of
recursive digital oscillators with a
bent towards the practical, and from
there we have looked at some com-
mon oscillators. Then we added some
mechanisms for controlling their am-
plitude and adjusting their frequency.
And last we showed a brief example of
how these oscillators and their con-
trol mechanisms may be used to make
FSK modulators. I hope I have
piqued the your interests, and I en-
courage you to go and develop your
own oscillators using the rules and
techniques presented here.

Acknowledgment
I would like to give credit to those
who frequent the USENET group
comp.dsp. From time to time ques-
tions arise about oscillators, and vari-
ous group participants have offered
information about oscillators that has
proved invaluable here for this article.

Clay Turner is vice president and
cofounder of Wireless Systems Engi-
neering, Inc. He has over 20 years of
experience in digital signal process-
ing, mathematical programming,
embedded programming, telephony,
and the design of “off-air” protocol
analyzers, and he is responsible for
mathematical algorithm develop-

ment at Wireless Systems Engineer-
ing, Inc. He is pursuing his Ph.D. and
holds a B.S. in mathematics and an
M.S. in physics from Georgia State
University. He is a member of Pi Mu
Epsilon and Sigma Pi Sigma honor
societies.

References
[1] J. Diefenderfer, Principles of Electronic Instrumen-

tation. Philidelphia, PA: Saunders College Pub-
lishing, 1979, pp. 185.

[2] M. Frerking, Digital Signal Processing in Com-
munication Systems. Norwell, MA: Kluwer,
1993, pp. 214-217.

[3] S. Friedberg and A. Insel, Introduction to Linear
Algebra with Applications. Englewood Cliffs, NJ:
Prentice-Hall, 1986, pp. 253-276.

[4] R. Higgins, Digital Signal Processing in VLSI.
Englewood Cliffs, NJ: Prentice-Hall, 1990, pp.
529-532.

[5] S. Leon, Linear Algebra with Applications, 2nd
ed. New York: MacMillan, 1986, pp. 230-259.

[6] A. Oppenheim and R. Schafer, Discrete-Time
Signal Processing. Englewood Cliffs, NJ:
Prentice-Hall, 1989, pp. 342-344.

[7] J. Smith and P. Cook, “The second order digital
waveguide oscillator,” in Proc. Int. Computer
Music Conf., San Jose, CA, Oct 1992, pp.
150-153.

[8] J. Smith and P. Cook, “System and method for
real time sinusoidal signal generation using
waveguide resonance oscillators,” U.S. Patent
#5701393, Dec 23, 1997.

[9] C. Turner, “A discrete time oscillator for a DSP
based radio,” in SouthCon/96 Conf. Rec., Or-
lando, FL, 1996, pp. 60-65.

MAY 2003 IEEE SIGNAL PROCESSING MAGAZINE 111

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

