Derivation of the 3 point frequency formula

By Clay S. Turner
11/5/08

If we assume uniform sampling and we have 3 consecutive samples, y_{0}, y_{1}, and y_{2}. Then if we assume they are consecutive samples of a sinusoid, then we may write them as:
$y_{0}=A \cos (\varphi-\theta)=A \cos (\varphi) \cos (\theta)-A \sin (\varphi) \sin (\theta)$
$y_{1}=A \cos (\varphi)$
$y_{2}=A \cos (\varphi+\theta)=A \cos (\varphi) \cos (\theta)+A \sin (\varphi) \sin (\theta)$
And here A is the amplitude and φ is an arbitrary phase and θ is the angular step per sample.

Since our angular step, $\theta=2 \pi \frac{f}{f_{s}}$, then we need to find theta to be able to back solve for f.

So let's add [1]+[3]
$y_{0}+y_{2}=2 A \cos (\varphi) \cos (\theta)$
Now just divide [4] by 2 times [2] and we find:
$\frac{y_{0}+y_{2}}{2 y_{1}}=\cos (\theta)$

Thus

$$
\begin{equation*}
\theta=\cos ^{-1}\left(\frac{y_{0}+y_{2}}{2 y_{1}}\right) \tag{6}
\end{equation*}
$$

Finally

$$
\begin{equation*}
f=\frac{f_{s}}{2 \pi} \theta=\frac{f_{s}}{2 \pi} \cos ^{-1}\left(\frac{y_{0}+y_{2}}{2 y_{1}}\right) \tag{7}
\end{equation*}
$$

