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Butterworth 
 
For Butterworth filters, normalized to a cutoff of 1 radian per second, the following are 
the Laplace forms. These are factored into a product of biquads for even order and a 
product of one linear with biquads for odd orders. 
 
 

Even Order N: 
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Odd Order N (N>1): 
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Odd Order N (N=1) 
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Butterworth Example 
 
For a 4th order Butterworth Filter, we have an even case which factors into 2 biquads. So 
we find our alphas to be simply ( )8cos2 π  and ( )8

3cos2 π . This yields our transfer 

equation: 
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Realizing the numerators are all simply one, we can make a simple table of the 
denominators for the 1st few orders of Butterworth Filters. 
 
 

Filter Order Denominator of Transfer Function 
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A plot of the 4th Order Butterworth response is shown below: 
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Bilinear Transform 
 
If one is using s domain filters normalized to 1 radian per second, the standard BLT 
becomes simply: 
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ff = . Hence f  is the normalized digital cutoff frequency for 

the filter. For example, if a digital filter with a cutoff of 1 kHz is needed and the sampling 
rate is 8 kHz, then 125.0=f and 21+=c . 
 
If the above BLT is applied to the standard 1st order low pass filter, we find: 
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The above form has a common gain factored out of the numerator. 
 
 
The standard 2nd order low pass section may be transformed similarly. We find for it: 
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