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Butterworth

For Butterworth filters, normalized to a cutoff of 1 radian per second, the following are
the Laplace forms. These are factored into a product of biquads for even order and a
product of one linear with biquads for odd orders.

Even Order N:

(1
H(S) - D(SZ +ans+1j

a, = 2cos(i(2n —1)}
2N

where

Odd Order N (N>1):
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Butterworth Example

For a 4™ order Butterworth Filter, we have an even case which factors into 2 biquads. So
we find our alphas to be simply 2005(%) and 2cos(3%). This yields our transfer

equation: H(s) = ! X !
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Realizing the numerators are all simply one, we can make a simple table of the
denominators for the 1% few orders of Butterworth Filters.
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A plot of the 4™ Order Butterworth response is shown below:
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Bilinear Transform

If one is using s domain filters normalized to 1 radian per second, the standard BLT
becomes simply:
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with c=cot(7f) and f = % . Hence f isthe normalized digital cutoff frequency for

the filter. For example, if a digital filter with a cutoff of 1 kHz is needed and the sampling
rate is 8 kHz, then f =0.125and ¢ =1++/2.

If the above BLT is applied to the standard 1st order low pass filter, we find:
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The above form has a common gain factored out of the numerator.

The standard 2" order low pass section may be transformed similarly. We find for it:
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