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Introduction:  
Hilbert transforms are essential in understanding many modern modulation methods. 
These transforms effectively phase shift a function by 90 degrees independent of 
frequency. Of course practical implementations have limitations. For example, the phase 
shifting of a low frequency implies a long delay, which in turn implies a computational 
process that maintains a long history of the signal. Hilbert transforms are useful in 
creating signals with one sided Fourier transforms. Also the concepts of analytic 
functions and analytic signals will be shown to be related through Hilbert transforms. 

90 Degree Phase Shifters: 
We will take a spectral approach and start with an ideal 90-degree phase shifter. To do 
this we would like a function that will transform a sinusoid to another sinusoid with the 
same amplitude and frequency but simply phase shifted by 90 degrees. So recalling the 
trigonometric identities: 
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Then we desire our transform to do the following: 
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These two conditions will also cause a sinusoid with arbitrary phase to be shifted 90 
degrees.  This follows since it may be decomposed into a sine and a cosine and each of 
these components will be shifted by 90 degrees. To show this, start with a sinusoid of 
arbitrary phase, θ , and decompose it into a sine and a cosine components. 
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Next transform (phase shift) the two components and reduce. 
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So we can see the effect of the transformation is a 90-degree phase shift regardless of the 
original phase. 
 
We also desire the transform to be expressible as a linear convolution. Thus, the 
transform will also obey superposition. The linearity property was used above in the 
arbitrary phase case. By modeling our transform this way, we can then use a powerful 
theorem from Fourier analysis that equates convolution in one domain to multiplication 
in the other. So let’s look at the transform in the frequency domain.  Recalling the Fourier 
pairs for sinusoids: 
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Then our frequency domain phase shift requirements become (after canceling out the 
twos and moving j over): 
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Recalling the Dirac Delta function is a distribution whose non-zero support is over an 
infinitely narrow region, we then only have to compare 4 points to solve this set of 
equations. It is helpful to look at positive frequencies separately from the negative ones. 
Doing this, we only compare two points at a time. 
 
So for 00 >=ωω , we find )0()()0( δωδ jH −=×  or simply jH −=)(ω . Likewise for 

00 <=− ωω , we find jH =)(ω . Finally for 00 ==ωω , we find 0)0()0( =× Hδ , 
hence 0)0( =H . 

 
After putting these cases together, we find the frequency domain solution for the 90-
degree phase shifter is: 
 

)()( ωω SgnjH ×−=  (7)
 
The Signum function is defined as: 
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Now we need the time domain version of the phase shifter so we can express the phase 
shifter as a convolution. This is achieved just by finding the inverse Fourier transform of 

).(ωH   
 
The result is: 
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So when we wish to phase shift a function, for example )(tv , by 90 degrees, we just 
convolve it with )./(1 t×π  
 
Recalling the standard integral form for the convolution of two functions, )(*)( thtv . 
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Since convolution is commutative, we also have: 
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So in terms of convolution, our phase shifter has the following integral forms 
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Now that we have a definition for the forward Hilbert transform, we find the definition 
for the inverse transform. The inverse Hilbert transform may be thought of as Hilbert 
transforming a function three times. I.e., shifting 270 degrees is the same as shifting 
negative 90 degrees.  Two shifts result in a 180-degree phase shift, which is simple 
negation. So a negative 90-degree phase shift is simply the negation of a 90-degree phase 
shift! So for the inverse Hilbert transform, we just convolve with - )./(1 t×π  
 

Hilbert Transform Definitions: 
Some papers start by defining a Hilbert transform is as an Integral transform. Since we 
started from a phase shifter point of view, and then we modeled it as a convolution, we 
immediately have two representations for the direct and inverse transforms. Of course an 
elementary change of variable converts one representation into the other.  
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Given a function )(tu , then its Hilbert transform )(tv is: 
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The inverse Hilbert transform is likewise similarly defined. 
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Since the basic integrals are improper these are to be evaluated as Cauchy Principal 
Value (CPV) Integrals. This implies a careful limiting process, taken symmetrically about 
the singularity, which results in exact cancellation. This basically means (for the 1st 
variant of the transform): 
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Here epsilon is an increasingly small distance from the singularity. A similar limiting 
process is also used with the 2nd form. 
 
Since integration is a linear operation, we see that Hilbert transformation is also a linear 
operation. This means any function expanded into a sum of sinusoids, can be easily 
Hilbert transformed by doing the appropriate 90-degree phase shifts on each of the 
components. 
 
Unlike other types of transforms, Hilbert transforms leave the function in the same 
domain as the original – the Hilbert transform of a temporal function is itself temporal. 

An example of evaluating a CPV integral 
 
Let’s evaluate: 
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So using the limit approach, we find: 
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A change of variable was made in the middle step, xy −= . 
 

A simple example of finding a Hilbert transform via convolution: 
 
 
Let’s find the Hilbert transform of )()( tCostu = . So inserting )(tCos  into the 2nd form of 
the Hilbert transform integral, we obtain: 
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Using the trigonometric identity for the cosine of a sum of angles, we now find: 
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Now using your favorite integral table or an adroit integration technique [see appendix 
A], obtain the following identities. 
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So now the solution is easy. 
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Thus we find )()( tSintv = . Hence the Hilbert transform of )(tCos is )(tSin . Likewise a 
similar process may be used to find the Hilbert transform of )(tSin  is )(tCos− .  So this 
verifies that convolution with the kernel, )(1 t×π , does indeed perform a 90-degree 
phase shift operation. 
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Analytic Functions 
 
The theory of Hilbert transformation is intimately connected with complex analysis, so 
we will now look at a requirement for isotropic differentiation of complex functions. We 
will use the standard paradigm of using a complex variable composed of two real 
components combined in the following way: 
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Here x and y are real values and j represents 1− . Similarly we can compose a complex 
valued function by combining two real valued functions (also standard): 
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Next we will utilize the standard definition of a derivative from real analysis and extend 
it to the complex case. This derivative limit is: 
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A difficulty with the definition is the result may depend on the direction that taken by 

z∆ , hence, we would like to know under what conditions the derivative is path 
independent.  So we will take two orthogonal paths and require the resulting limits to be 
the same. This will yield path independence and have a derivative definition that gives 
consistent results. Recall yjxz ∆+∆=∆ . 
 
 
 So we will first let 0=∆y and move along the x-axis. 
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Next will move along the y-axis and let 0=∆x . 
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The requirement that the two limits are to be the same, results in the Cauchy-Riemann 
relations.  These are found by setting the two limits equal to each other and equating the 
real and imaginary parts. The C-R relations are: 
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If a complex function obeys the C-R relations and has differentiable components, it is 
said to be analytic. A function may be analytic over just part of its domain. However a 
function can’t be analytic at just a single point – if it is analytic at a point, then it also 
must be analytic in an open neighborhood around that point.  
 
 
Since we composed our complex function by summing together two functions, one 
purely real and the other purely imaginary, it would seem that our complex function has 
two degrees of freedom. However, the function’s being analytic creates an interesting 
restriction. If we recall that ( ) 2*zzx +=  and ( ) jzzy 2*−= , and 

),(),(),( yxvjyxuyxf ×+= , then let’s look at the derivative with respect to *z . So 
using the chain rule, we find the following expansion: 
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Next use 
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So our derivative now has the form: 
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If the function obeys the C-R relations, then the partial derivative is simply zero! So in a 
sense, analytic functions are independent of *z .  
 
Another neat quality of analytic functions is the components, ),( yxu  and ),( yxv  each 

solve Laplace’s equation. Specifically 02
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directly from differentiating the C-R relations. Starting with the C-R relations: 
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After differentiating the first relation with respect to x and the second relation with 
respect to y, we find: 
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Now equating the mixed partials, we find yyxx uu −= , so we see that Laplace’s equation is 
satisfied. A similar process can be applied to make the case for ),( yxv . Since both 
components solve Laplace’s equation, their sum will also, so we have the following neat 
theorem for analytic functions: 
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In our proof of this, we assumed the equivalence of mixed partials and the existence of 
higher order derivatives. In advanced texts on complex analysis, these will be shown to 
be always true for analytic functions. 
 

An Analytic Function Example 
 
Example: Show jze is analytic. Using the exponent addition rule and Euler’s identity, we 
find: 
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Now find the four partial derivatives: 
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Plugging these into the C-R relations, one finds they are obeyed for all x and y. Such a 
function is analytic everywhere and is sometimes called an entire function. 
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Analytic Signals 
 
Related to the concept of analytic functions is the idea of an analytic signal. One way to 
make one is by evaluating an analytic function along one of the axes. For our example 
function, I will use the real axis. Our above analytic function has the corresponding 
analytic signal: 
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The choice of axis depends on the analytic function. If the wrong choice is made, the 
result will not be an analytic signal.  How to chose which axis will be made clear shortly. 
 
Analytic signals have several properties that prove important in signal processing.  The 
first property is analytic signals have one-sided Fourier transforms. A second property is 
analytic signals obey a generalization of Euler’s identity.  A third property is the analytic 
signal’s imaginary portion is the Hilbert transform of its real portion.  
 
Assuming our third property is true, then given an analytic signal, )()()( tvjtut ×+=ψ , 
its Fourier transform is )()()( ωωω VjU ×+=Ψ .  
 
Next use the spectral form of the Hilbert transformation to find: 
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And we can easily see that 0)( =Ψ ω when 0<ω . So this signal has no negative 
frequency components. Likewise starting with the conjugate, )(* tψ , we find its spectral 
representation to be )())(1()( ωωω USgn ×−=Ψ , which has no positive frequency 
components. 
 
The components of analytic signals also obey a generalization of Euler’s identity. For 
example: 
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And of course: 
 

)()()()()()( * tvjtuttvjtut ×−=×+= ψψ  (40)
 

 
For Euler’s identity, just let )()()( tSinjtCoset jwt ××+×== ωωψ . 
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To show the Hilbert transform property of analytic signals, we will have to evaluate a not 
so obvious integral. 
 
We want to evaluate the following integral over the 4-piece contour shown in figure 1: 
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Figure 1 

 
The four pieces are: the outer semicircle with radius R, the left horizontal line segment, 
the right horizontal line segment, and the inner semicircle with radius epsilon. 
 
Since we are assuming )(zψ is analytic on and inside of c and the path takes a detour 
around the singularity, the Cauchy-Goursat theorem says this equals zero. So next we 
expand this integral into 4 path integrals whose sum is zero. Thus we have: 
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Since we will look at the limiting case where the limits are such that the outer semicircle 
becomes infinitely large and the inner semicircle likewise becomes infinitely small, we 
are able to combine the middle two integrals into a CPV integral. Hence, 
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Earlier I mentioned how the choice of axis matters. This is where we choose the axis so 
that Jordan’s Lemma may be applied to the 1st integral to make it zero. For some analytic 
functions, we will use the y axis instead of the x axis. The last integral (sometimes called 
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a detour integral since it is used to hop around the singularity evaluates to )(τπψj− . 
This integral is found by using a variation of Cauchy’s integral formula where in the limit 
of the path’s radius going to zero, the integral’s value is )(τθψj  where θ  is the angle, 
measured ccw, subtended by the path relative to the singularity. So plugging in these two 
results we find: 
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Now recalling )()()( xvjxux ×+=ψ , we find: 
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So by splitting this out into two real valued equations, we find: 
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These are simply the Hilbert transform relations between )(τu  and )(τv . 
 
 

Appendix A: Integration tricks 

Iterated Integration by Parts 
 
Let’s say we wish to integrate ∫ dxex x22 . Since this is an integral of a product of 
functions, we know that “integration by parts” would be the standard approach. However 
with this example, we will have to do this multiple times. There is an approach called 
“iterated integration by parts” that is easily applied. And the method is actually easier to 
remember. Basically we separate the integrand into two parts that become the headings of 
two columns. Each entry in the left column is formed by taking the derivative of the entry 
right above it. Similarly each entry in the right column is made by taking the integral of 
the entry right above it. Usually the columns are filled until the bottom left hand entry is 



Hilbert Transforms, Analytic Functions and Analytic Signals 

3/2/2005 Page 12 of 13

zero. The integral is made up of the sum of diagonal (upper left to lower right) products 
with alternating sign plus the integral of the product of the entries on the bottom row 
taken with a continued alternating sign. If the rows are filled in until the bottom row is 
zero, then this last integral is not needed. An example will make this iterated process 
clear. For ∫ dxex x22 , we build the following table: 
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So now combining terms with alternating sign, we find: 
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So one can certainly see this method’s efficacy. Since this example is one where the left 
hand term is a polynomial, the rows are filled in until the bottom row’s product is zero. 
However some integrals have terms that will not go away regardless of the number of 
times a function is differentiated. For example let’s find: ∫

−× dxexSin sx)( , so we build 
the table like this:  
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So now we find: 
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This is one of the cases where the integration process takes you around a loop and ends 
up almost where you began. Except the bottom integral works out to be an independent 
function times the original integral. So simplifying the algebra, we find: 
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( ) ( )∫ +×+−=+ −− CxSinsxCosedxexSins sxsx )()()(1 2  (51)

 
 

Which when the integral is fully resolved yields: 
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We will soon have need for the related semi-infinite definite integral, which we can 
easily evaluate using the above result. 
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1/x Substitution 
 

 
Now let’s look at a method for evaluating the integral of a sinc function. Specifically 
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see how to do the integral. 
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