Turner)
Ś
(Clay
Table
Parameter
Resonator

term is simply zero. If you are using a resonator in a Goertzel application, then the real and imaginary components of the Fourier coefficient are c_k and s_k . In equations calculated in the given order are what you need to do per iteration to update the oscillator. If you are not driving the resonator with data, then the x_n alone oscillators or driven as in Goertzel applications. Each oscillator/resonator has two state variables. Here they are assumed to be and b. The oscillator This table list the parameters for some common and not so common 2nd order discrete time sinusoidal oscillators/resonators. These may be operated as stand Goertzel apps, after driving the oscillator with all of the data, then iterate one more time with zero input to get the phase correct. The energy is given by E. frequency is determined by the step angle theta. This is the increment in angle per iteration. The tuning parameter, κ , is determined by θ . The iteration

	Е	$+b^2 - \kappa \cdot a \cdot b$			$+\frac{1-\kappa}{\kappa}\cdot h^2$	$1+\kappa$			$+b^2 - \kappa \cdot a \cdot b$		$+(1-\kappa^2)\cdot b^2$		
Resonator Parameter Table for Common Configurations	<i>k</i>	$\theta) \cdot b \qquad a^2$			$\left[\frac{\theta}{2}\right]$, $h = \frac{1}{a^2}$	2) 2			$\left \frac{\theta}{2}\right , \mathbf{k} = a^2$	2	$p \cdot b$ a^2		
	Ś	– sin(_ tan	IIIII					$\sin(\epsilon$		
	c_k	$a - \cos(\theta) \cdot p$			ø				$a = \sin\left(\frac{\theta}{\theta}\right)$. h	$\left(2\right)^{0}$	а		
	Matrix	$\begin{bmatrix} \kappa & -1 \end{bmatrix}$	1 0		$\begin{bmatrix} K & K-1 \end{bmatrix}$	$\begin{bmatrix} \kappa+1 & \kappa \end{bmatrix}$			$\begin{bmatrix} 1 - \kappa^2 & \kappa \end{bmatrix}$	$\begin{bmatrix} -\kappa & 1 \end{bmatrix}$	$\begin{bmatrix} \kappa & 1-\kappa^2 \end{bmatrix}$	$\begin{bmatrix} -1 & \kappa \end{bmatrix}$	
	Iteration equations	$\tau = \kappa \cdot a - b + x_n$	b = a	$a = \tau$	$\tau = \kappa(a+b)$	$\rho = \tau - b + x_n$	$b = \tau + a$	d = b	$p = p - \kappa a$	$a = a + kb + x_n$	$\tau = \kappa b - a$	$a = b - \kappa \tau + x_n$	b = au
	$= \mathcal{X}$	$2\cos(\theta)$			$\cos(\theta)$				$\left(\frac{\overline{ heta}}{\overline{ heta}}\right)^{\operatorname{uis}} c$	$\frac{2}{2}$	$\cos(\theta)$		
	Resonator	Biquad			Waveguide				Magic	Circle	Staggered	type #2	

$a^{2} + b^{2}$	$a^2 + \frac{b^2}{1-\kappa} - a \cdot b$	$a^2 + \kappa \cdot b(a+b)$	$a^2 + b^2 - \kappa \cdot a \cdot b$	$a^2 + \kappa \cdot b(a+b)$	$a^2 - \kappa \cdot b(a+b)$
q	$\frac{1}{2}\cot\left(\frac{\theta}{2}\right)\cdot b$	$-\sin(heta)\cdot b$	$\sin(\theta) \cdot b$	$\sin(heta) \cdot b$	$-\sin(heta)\cdot b$
a	$a-\frac{b}{2}$	$a+2\sin^2\left(\frac{\theta}{2}\right)\cdot b$	$a + \cos(\theta) \cdot b$	$a+2\cos^2\left(\frac{\theta}{2}\right)\cdot b$	$a+2\sin^2\left(\frac{\theta}{2}\right)\cdot b$
$\begin{bmatrix} \sqrt{1-\kappa^2} & \kappa \\ -\kappa & \sqrt{1-\kappa^2} \end{bmatrix}$	$\begin{bmatrix} \kappa & 1 \\ \kappa -1 & 1 \end{bmatrix}$	$\begin{bmatrix} 1-\kappa & -\kappa \\ 1 & 1 \end{bmatrix}$	$\begin{bmatrix} 0 & 1 \\ -1 & k \end{bmatrix}$	$\begin{bmatrix} \kappa - 1 & \kappa \\ -1 & -1 \end{bmatrix}$	$\begin{bmatrix} \kappa+1 & \kappa \\ 1 & 1 \end{bmatrix}$
$\tau = \sqrt{1 - \kappa^2} a + \kappa b + x_n$ $b = -\kappa a + \sqrt{1 - \kappa^2} b$ $a = \tau$	$\tau = \kappa a + b$ $b = \tau - a$ $a = \tau + x_n$	$b = a + b$ $a = a - kb + x_n$	$\tau = b$ $b = kb - a$ $a = \tau + x_n$	$b = -(a+b)$ $a = -kb - a + x_n$	$b = b + a$ $a = a + kb + x_n$
$\sin(heta)$	$2\cos(\theta) - 1$	$4\sin^2\left(\frac{\theta}{2}\right)$	$2\cos(heta)$	$4\cos^2\left(\frac{\theta}{2}\right)$	$-4\sin^2\left(rac{ heta}{2} ight)$
Coupled	Reinsch	Type "A"	Type "B"	Type "C"	Type "C" Modified