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Taylor’s Series 
Taylor’s series result when a polynomial is made to match a function. The “matching” is 
the equating of the function and its derivatives to that of the polynomial at the point of 
expansion. When the expansion point is at the origin, then the series is a special case 
known as Maclaurin’s series. Often the infinite series is truncated and used as an 
approximation to an otherwise more complicated and computationally more expensive 
function. 
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From the definition one immediately “sees” that )(xf and all of its derivatives must exist 
at point 0x . Also there are concerns with the region of convergence which standard tests 
are available to see if the series is viable, e.g. the limit ratio test. 

Gain Functions 
Sometimes DSP algorithms contain a mathematical component that serves as a gain 
function. And this gain function may contain an element that is computationally 
expensive such as finding a root or performing a division. Sometimes two or more such 
elements are present. Also in some applications the gain is nominally constant, so a low 
order Taylor’s expansion can provide an efficacious approximation to the gain function. 
 
 For example, a quadrature feedback oscillator has two orthogonal outputs that when 
combined (as a vector) should have a constant modulus. I.e., if the outputs are )(tI and 

)(tQ , then it is desired that consttQtI =+ )()( 22 .  
 
In a discrete system, we can talk about our nth output being simply the vector [ ]T

nn QI . 
 
Also since oscillators utilize feedback, then if the modulus for the output vector is not the 
desired value, then the vector may be scaled so as to make it have the correct value. Thus 
if we define 0m as the desired modulus and m as the measured modulus, then the gain 
function is simply mGm ⋅=0 . We will now drop the subscript n, realizing that all values 
used in the calculation are for the same temporal coordinate. 



 Now after recalling that [ ][ ] TQIQIm = and [ ][ ]T
QIQIm ˆˆˆˆ
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So now let’s expand )(mG into a Taylor’s series. This yields: 
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For two common values for the modulus, the following 1st order approximations yield: 
 

Modulus Gain Equation (1st order Approximation)
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Another common application where a gain function shows up is in one form of an FM 
demodulator. If we have an analytic signal )()()( tjQtItf += , then the demodulation 
(instantaneous frequency) is found by: 
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So we immediately see we have a gain function of mG /1= where 22 QIm += . The 
Taylor’s series is: 
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In a radio application where an AGC precedes the demodulation step, one expects the 
modulus to be somewhat constant, so depending on the effectiveness of the AGC, then 
only a low order approximation is needed and this may prove to be computationally 
economical relative to the direct division. 
 
For example, let’s say the AGC sets the nominal modulus to be 1.0. Then the 1st order 
approximation is: 
 

( )222)( QImG +−=  However we see that the advantage here is not as great as with the 
oscillator stabilization. With demodulation we are bypassing a division whereas with the 
oscillator we are bypassing a division and a square root! 


