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Discrete-Time Sinusoidal 
Resonators 

• DTSRs may be represented with 2 by 2 
real valued matrices. 

• DTSRs are easily analyzed using matrix 
theory. 

• DTSRs are compactly represented by 
matrices. 

• DTSR properties are easily gleaned from 
the matrix representations. 
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Trigonometric Recursion 

• Early example from Francois Vieta (1572). 
Vieta used this formula to recursively 
generate trig tables.   
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Trigonometric Recursion 

• Vieta’s formula allow’s one to recursively 
find subsequent values of cos() and sin() 
just by using the last two values and a 
multiplicative factor. E.g., 
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Network to Matrix Formulation 

• Network form of Vieta’s 
recursion (Biquad). 

• Biquad has two state 
variables (memory 
elements) 

• Biquad uses one multiply 
and one subtract per 
iteration 

• Biquad is most well 
known sinusoidal 
recursion. 
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Network to Matrix Formulation 

• Label inputs and the 
outputs of each 
memory element in 
the network. 

• Then write each 
input’s equation in 
terms of all outputs. 
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Biquad Iteration Equations 
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Biquad Matrix Formulation 

• Matrix Formulation of Vieta’s Recursion 
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Another Trigonometric Example 

• Example with two coupled equations 
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Coupled Recursion 

• Here we update both sin() and cos() just using 
last two values and two multiplies per iteration. 
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Coupled Iteration Equations 

• Just like with the biquad structure, we may write 
the iteration equations in a similar manner. 

• The step angle per iteration is  
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Coupled Matrix Formulation 

• Recognized as standard rotation matrix 
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Discrete-Time Oscillator Structure 

• The two example oscillators have the 
following in common: 

• Each uses 2 state variables. 
• The matrix in each case is 2 by 2. 
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Discrete-Time Linear Oscillators 

• So we will look at the following types of 
oscillator iterations (based on a general 2 by 2 
matrix) more closely: 
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Discrete-Time Barkhausen Criteria 

• From the point of view of repeated iteration we 
see the nth output of the oscillator is simply: 
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Resonator Theory 

• Besides looking at known trigonometric 
relations, how do we find new oscillator 
structures? 

• Answer: We develop our own theory with 
guidance from analog theory. 
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Barkhausen’s Linear Oscillator 
Theory 

• Heinrich Barkhausen modeled a linear 
oscillator as a linear amplifier with its 
output fed back in to its input and then 
stated two necessary criteria for 
oscillation. 
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Barkhausen Criteria 

1. The amplifier gain times the feed back 
gain needs to equal unity. 

2. The round trip delay needs to be a 
integral multiple of the oscillation period. 
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Discrete Time Osc. Theory 

• So combining the matrix representation 
idea from our two examples with 
Barkhausen’s oscillator theory, we can 
come up with the discrete time 
counterparts to the Barkhausen Criteria. 
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Discrete Time Barkhausen Criteria 

• The determinant of the oscillator matrix 
must be unity. 

• The oscillator matrix when raised to some  
real power will be the identity matrix.  
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Discrete-Time Barkhausen Criteria 

• Thus our two criteria in mathematical 
terms of matrix A are: 
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Barkhausen’s 1st Criterion 

• If we think of the two state variables as 
components of a vector, then Barkhausen’s 1st 
Criterion relates to length preservation. I.e., this 
says the length of the vector is unchanged by 
rotation. 



(c) 2010 Clay S. Turner 

Barkhausen’s 2nd criterion 

• The periodicity constraint in combination 
with the unity gain means the oscillator 
matrix has complex valued eigenvalues. 

• This in turn means the matrix’s “trace” has 
a magnitude of less than 2. 
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Discrete-Time Barkhausen Criteria 
• Thus our two criteria may alternatively be stated in 

terms of the actual matrix elements: 
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Eigen-Theory 

• A big advantage of using a matrix 
representation of the oscillator structure, is 
we can apply Linear Algebra with its tools 
to analyze oscillators. 

• Eigentheory actually allows us to factor the 
matrix into a triple product where the step 
angle and the relative phases are readily 
apparent. 
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Oscillator Eigenvalues 

• The oscillator matrix will have two eigenvalues 
that reside on the unit circle, and they are 
complex conjugates of each other. 

• The eigenvalues are found to be: 
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Oscillator Step Angle 

• The angle theta is the step angle per iteration 
of the oscillator. 

• Thus the oscillator frequency is determined 
wholly by the trace (delta) of the matrix! 
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Analysis of the off Diagonal Matrix 
Elements 

• A study of the eigen values along with 
Barkhausen’s criteria will show that the “off 
diagonal” matrix elements must obey the 
following: 

02112 <αα
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Properties of the off Diagonal 
Matrix Elements 

• Thus we see that neither off diagonal 
element may be zero! 

• No oscillator matrix may be triangular. 
• And we see that they must have opposite 

signs! 
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State Variables 

• If the state variables are plotted as a 
function of time, they will each be a 
sinusoid, both with the same frequency, be 
out of phase and may have a relative 
amplitude not equal to one. 
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Relative Phase shift 

• From a study of the eigenvectors, the relative 
phase shift between the state variables (b 
relative to a) is: 
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Relative Phase Shift (alternative) 

• An alternative formulation for relative phase shift 
is: 
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Quadrature Criterion 

• From the phase shift formula, we find that 
a relative phase of +-90 degrees requires 
the two elements making up the trace of 
the matrix to have the same value! 

• Thus, from simply looking at an oscillator 
matrix we can ascertain if the oscillator is 
quadrature or not. 
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Relative Amplitude 

• The relative amplitude (b to a) is given by: 
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Relative Amplitude 

• From our earlier work on the off diagonal 
elements, we know that the relative 
amplitude will always be a positive value. 
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Equi-Amplitude Criterion 

• The relative amplitude relation tells us that if we 
are to have both state variables have the same 
amplitude, then we simply require: 
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Matrix Factoring 

• The main point of the eigenanalysis is to factor 
the matrix. We find: 
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Matrix Exponentiation 

• The factoring makes raising the matrix to a 
power straight forward and reveals the nature of 
theta. 
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Initialization 

• Assuming we have a chosen oscillator matrix, 
then from eigen-theory, we find the state 
variables need to be initialized to 
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Nth output of oscillator 

• From eigen-theory, we find the nth output 
(assuming the aforementioned initialization) 
to be: 
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Oscillator Amplitude 

• The amplitude squared (energy) of the 
oscillator is given by: 
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Amplitude Control 

• To keep magnitude errors from growing, a 
simple “AGC” type of feedback may be 
employed. Thus a gain “G” is calculated 
every so often based on the energy, E, 
and is used to scale the state variables. 
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Useful Amplitude Control 

• A 1st order Taylor’s series expansion around the 
desired amplitude square works quite well. Two 
examples are: 
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Digital Waveguide Osc. 

• Single Multiply, Quadrature Oscilator 
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Dual Multiply - Quadrature 

• This oscillator uses 2 multiplies per iteration, 
has quadrature outputs and uses staggered 
updating. 
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Staggered Updating 

• The matrix formulation’s compactness is 
nice, but it implies a simultaneous 
updating of the state variables. 

• Sequential updating may require 
temporary storage. 
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Staggered Updating 

• Staggered updating is a method where 
one state variable is 1st updated and then 
that updated value is used in the 2nd 
update equation. 
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Staggered Update - Derivation 

• We will start with a pair of staggered updated 
equations and force Barkhausen’s criteria 
upon them. 
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Staggered Update - Derivation 

• So now we insert the 1st update into the 2nd 
equation and we get the following matrix form: 
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Staggered Update - Derivation 
• Next we apply Barkhausen’s 1st criterion and 

we find the following 3 parameter matrix 
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EquiAmp-Staggered Update 

• To be equi-amplitude, we just set the off-
diagonal elements to be negatives of each 
other. 

βδα −=
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EquiAmp-Staggered Update 

• Thus our 2 parameter equi-amplitude staggered 
update oscillator has the following form. 
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EquiAmp-Staggered Update 

• Now we can substitute some simple values for 
the parameters and get a couple of neat 
oscillators. 

• First we will set: 

1=β
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Magic Circle Algorithm 
• The “magically” wonderful oscillator results: 
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Magic Circle Algorithm 

• The Magic Circle Algorithm’s update equations 
are the simple: 
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Staggered Update Biquad 

• Another choice for the parameters results in a 
Biquad oscillator with staggered updating. The 
tradeoff here is between an extra multiply 
verses a storage location. To obtain this form 
just let: 

1=βδ
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Staggered Update Biquad 

• The Staggered update biquad’s matrix form is: 
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Staggered Update Biquad 

• The update equations are: 
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Reinsch (Staggered Update) 

• If we relax the equiamplitude requirement and 
set 2 of the 3 parameters to unity, then we can 
obtain Reinsch’s formulation. For example: 

11 == δβ
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Reinsch (Staggered Update) 

• Here we get a the following matrix and 
corresponding update equations: 
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An Oscillator Application 

• The venerable Goertzel Algorithm uses a 
Biquad oscillator for its calculation. 

• However any oscillator may be used in the 
Goertzel Algorithm. 

• Some oscillators will have better numerical 
properties than others. I.e., especially for 
low frequencies. 
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The Generalized Goertzel 
Algorithm 

• Goertzel processes N values of data and 
computes a Fourier Coefficient (single 
frequency) for the data. We can describe 
this algorithm in four (five) main steps. 
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The Generalized Goertzel 
Algorithm (Step 1) 

• Initialization – uses 1 datum. 
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The Generalized Goertzel 
Algorithm (Step 2) 

• Recursive computation with all input data. “A” is 
the oscillator matrix. For  
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The Generalized Goertzel 
Algorithm (Step 3) 

• Phase Compensation 
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The Generalized Goertzel 
Algorithm (Step 4) 

• Calculation of the Fourier Coefficient 
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The Generalized Goertzel 
Algorithm (Step 5a) 

• Energy Calculation assuming steps 3 and 4 are 
performed. 
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The Generalized Goertzel 
Algorithm (Step 5b) 

• If the energy (amplitude squared) is all that is 
needed, then just skip steps 3 and 4 and 
calculate the following: (a and b) are the 2 
elements of the last result from step 2. 
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Improving Goertzel 

• Some choices of oscillator design will yield 
better numerical accuracy than others. 

• For comparison, we show the Biquad, 
Reinsch, and Magic Circle Oscillators and 
how they perform in Goertzel. 

• For this test. N=1000 points 



(c) 2010 Clay S. Turner 

Extended Goertzel Results 
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Zoomed In View (Results) 
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Results Explaination 

• In low frequency limit: 
• Biquad is in phase and equiamplitude 
• Reinsch is in phase and amplitudes are 

unmatched 
• Magic Circle is quadrature and 

equiamplitude. 
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Discrete Time Oscillators 

 
 
• Thanks to all who are willing to listen ;-) 
 
• The End for Now! 


